
Tcl/Tk on Android

http://www.androwish.org

Icon kindly donated by Jorge Raul Moreno
Domain and web space kindly donated by D. Richard Hipp

http://www.androwish.org/

AndroWish

● Native Tcl/Tk 8.6 port for Android ≥ 2.3.3 on ARM and x86
processors. Top goal: execute existing Tcl/Tk scripts on Android
without modification.

● Uses Tim Baker's SDLTK project for graphics rendering, see
http://members.shaw.ca/tnbaker/SDLTk
– X11 emulation based on AGG (Anti-Grain-Geometry,

http://www.antigrain.com) and SDL 2.0 (http://libsdl.org)

– freetype font engine (http://www.freetype.org)

● Mounts its constituting APK (Android Package, i.e. the app)
using a built-in ZIP file system based on mmap(2)

● “Batteries included” like TclKits (i.e. many ready-to-use Tcl
extensions already bundled)

● Tcl commands available to use specific Android facilities

http://members.shaw.ca/tnbaker/SDLTk
http://www.antigrain.com/
http://libsdl.org/
http://www.freetype.org/

AndroWish, the big picture

AndroWish, limitations

● Due to Android process start up with respect to
the window system exec(n) is limited to
non-Tk processes, i.e. you can't exec wish.

● The bandwidth of device screen resolutions is
broad (140 dpi ... 500 dpi) compared to usual
desktop systems. But many elements of Tk
widgets are pixel based.

SDLTK

● Partial Xlib replacement to implement rendering of standard Tk
widgets using SDL and AGG and to support most features of
extensions (treeview, tktable, TIX, BLT).

● Event handling by translating SDL events to X11 events plus
additional virtual events
– App life cycle (<<WillEnterBackground>>,
<<WillEnterForeground>>, etc.)

– Accelerometer is handled by SDL and mapped to an SDL joystick, and
translated to Tk virtual event <<Accelerometer>>

– Multi-touch events <<FingerUp>>, <<FingerDown>>,
<<FingerMotion>>, <<PinchToZoom>>

● Other SDL goodies available through sdltk command

● Can be built standalone on other platforms (currently tested on
Linux x86/Raspberry with X11 and DirectFB),
see http://www.ch-werner.de/sdltk

http://www.ch-werner.de/sdltk

sdltk command

● Obtain power management information
(sdltk powerinfo)

● Control accelerometer (sdltk accelerometer)

● Control screensaver (sdltk screensaver)

● Show/hide virtual keyboard (sdltk textinput)

– built into standard bindings of entry and text widgets

● Control emulation of middle and right mouse buttons for
context menus and panning/scrolling
(sdltk touchtranslate)

borg [b k]ˈ ɔʁ

● German imperative of “borgen” (to borrow)
● Inspired by Scripting Layer for Android (SL4A) and PhoneGap (now

Apache Cordova)
● Junction to connect the (native) Tcl/Tk with the (Java) Android

universe
● Use Android facilities from Tcl scripts

– Information about device

– Activities (Android apps)

– Alarms, Notifications

– Content (Android databases)

– Location (GPS)

– Text to speech and speech recognition

● Report device events using Tk virtual events (network status,
location updates, sensor events)

borg command examples

Obtain information about the display

 borg displaymetrics

 density 1.33125 densitydpi 213 \
 width 800 height 1216 \
 xdpi 216.17021 ydpi 215.31126 \
 scaleddensity 1.33125

borg command examples

Use Android's text-to-speech facility for speech
output

 borg speak “resistance is futile” \

 en_US

borg command examples

Add an icon to Android's desktop, which launches
a Tcl script contained in AndroWish's ZIP mounted
/assets directory

 borg shortcut add \

 file://assets/sdl2tk8.6/demos/widget

borg command examples

Use other Android activities (parts of other apps). Example: read a bar code using
the http://code.google.com/p/zxing bar code scanner app.

 proc barcode_read {code action uri type cat data} {

 array set result $data

 if {[info exists result(SCAN_RESULT)]} {

 # that is the barcode

 # result(SCAN_RESULT_FORMAT) is the barcode format

 }

 }

 borg activity com.google.zxing.client.android.SCAN \

 {} {} {} {} {} barcode_read

http://code.google.com/p/zxing

borg virtual events

● <<LocationUpdate>>: location information is available and can be read using

borg location get

● <<SensorUpdate>>: a sensor can be read using

borg sensor get ...

● <<NetworkInfo>>: network status was updated and can be read using

borg networkinfo

● <<Bluetooth>>: Bluetooth status was updated and can be read using

borg bluetooth state

Other AndroWish goodies

● bluetooth command allows to create
Bluetooth client and server sockets providing
the serial port profile (SPP). These sockets are
normal Tcl channels.

● usbserial command allows to use certain
USB to serial converters (FTDI, Prolific) similar
to normal Tcl serial channels, i.e. fconfigure
can be used to control the baud rate etc.

Anatomy of AndroWish's APK

Directory within APK Description Size uncompressed

assets/ Application auxiliary files, Tcl libraries 38 MByte

 tcl8.6/

 sdltk8.6/

 fonts/ Default fonts, Deja Vu

 ... “Batteries included” (SQLite, tcllib, tls, treectrl, ...)

 app/

lib/ Native code, shared libraries

 armeabi/ ... for ARM processors 12 MByte

 x86/ ... for x86 processors 18 MByte

res/ Android Resources few kByte

 drawable/ ... icons

 layout/ ... layout, styles

resources.asrc Application resources few kByte

AndroidManifest.xml Application descriptor few kByte

classes.dex Compiled Java code for Android's Dalvik VM < 1 MByte

META-INF/ JAR Manifest, signatures of all files in APK < 1 MByte

Batteries included

How to roll your own app

● It is possible to re-use AndroWish's infrastructure
(/assets directory with Tcl runtime, native shared
libraries) from other apps.

● A slightly modified Java glue is required (about 300
kByte compressed Java classes, compared to ≥ 24
MByte of the complete AndroWish APK).

● Due to APK building (various Android tools and Java
jarsigner needed) this must be done using
Android's SDK and optionally Eclipse.

● A demo project using this approach is in the source
tree of AndroWish (subdirectory hellotcltk)

Dive into the hive: Preparations

0. AndroWish's APK is installed and launched.

1. The static constructor of AndroWish's activity loads
various shared libraries including
System.loadLibrary(“main”);

2. The JNI_OnLoad() function of libmain.so
remembers a pointer to the JVM among other initialization
steps.

3. The constructor of AndroWish's activity calls a static
native method in libmain.so, which keeps a Java object
reference on the activity for later. The activity object is the
main entry point to carry out Android-specific functions.

Dive into the hive: let the borg bark

1. Tcl evaluates borg beep.

2. The native code in libmain.so invokes a static method on the activity object obtained
 during startup:

 JNIEnv *env = GetJNIEnv();
 jmethodID mid = (*env)->GetStaticMethodID(env, jactivity, "beep", "()V");
 (*env)->CallStaticVoidMethod(env, jactivity, mid);

3. In the activity class the JVM executes this static method:

 public static void beep() {
 Runnable beeper = new Runnable() {
 public void run() {
 Uri ringuri = RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);
 Ringtone tone = RingtoneManager.getRingtone(mSingleton.getBaseContext(), ringuri);
 if ((tone != null) && (!tone.isPlaying())) {
 tone.play();
 }
 }
 };
 mSingleton.runOnUiThread(beeper);
 }

4. The notification sound is played back (more or less barking due to microscopic speakers).

Dive into the hive: borg sensors

1. Tcl evaluates the command borg sensor enable 42 (that is our fictional sense of life sensor).

2. The native code in libmain.so invokes a static method, which switches that sensor on.

3. The AndroWish activity includes a supplemental class, which implements a SensorEventListener interface.
 When new sensor data is available, this method is invoked:

 public void onSensorChanged(SensorEvent event) ...

 It stores sensor data in a synchronized field of the supplemental class. Finally this native method is called:

 mAndroWish.nativeTriggerSensor(42);

4. This carries out the following code in libmain.so:

 SDL_Event event;
 event.type = SDL_USEREVENT;
 event.user.code = 42;
 event.user.data1 = (char *) “SensorUpdate”;
 if (SDL_PeepEvents(&event, 1, SDL_ADDEVENT, 0, 0) <= 0) return -1;
 return 1;

5. The SDL_USEREVENT is processed like other SDL events (touchscreen, mouse, keyboard) in the Xlib emulation
 layer and transformed into a virtual Tk event <<SensorUpdate>>, which is sent to all Tk toplevel windows.

6. Zero or more Tcl event handlers bound to <<SensorUpdate>> evaluate borg sensor get 42 in order to read
 out the sensor data from the synchronized field in the supplemental class.

Dive into the hive: Activities

0. Activities come in two forms: one-shots without synchronization and a kind of remote procedure calls delivering
 results back to the caller. Execution is always asynchronous, i.e. the results are returned through callback
 functions. borg activity supports both modes.

1. borg activity ... -callback ... invokes native code in libmain.so, which translates the (many)
 parameters to their Java counterparts and invokes a static method in the AndroWish activity object which
 starts the activity.

2. This is remembered in a callback structure within libmain.so to match with the result later and to transport
 it back to Tcl.

3. The Android system carries out the activity and returns the result to the AndroWish activity object's
 onActivityResult() method.

4. In onActivityResult() the result is preformatted and presented to the native method
 nativeIntentCallback() of libmain.so.

5. In nativeIntentCallback() the matching callback structure is looked up, the preformatted results are
 translated to be appended to the -callback argument within the callback structure. That structure is
 finally queued to a thread-specific callback queue and a single byte is written into the write end of the pipe
 associated with the queue.

6. The file event handler on the read end of the pipe (running in the thread, which issued borg activity in
 step 1.) is invoked due to readability of the pipe. It empties the pipe and invokes all callbacks of the callback
 structures read out from the queue.

7. One-shot activities omit steps 2. to 6.

8. For speech recognition results the same mechanism (callback structure, queue, and pipe) is used.

X11 Emulation: The Puzzle

X11 Emulation: The Pieces

● SDL: device events, low-level timer, Android glue, frame buffer,
low-level drawing surfaces, screen refresh functions.

● AGG: anti-aliased rendering (e.g. XDraw*() functions).
● freetype: low-level font support (loading TTF files, basic rendering).
● Event thread: transformation of SDL events to X events, screen

updates from frame buffer (rate limited to 50 fps), event translation
(pinch-to-zoom, middle/right mouse button emulation).

● Display: X11 display structure used to transfer X events to Tcl threads
(one Tcl thread opens one Display like in Tk on X11).

● Big Xlib lock: Mutex plus condition variable to serialize X requests and
to deal with server grabs like a real X server does.

● Pipes: OS level unidirectional communication channels to indicate
queue not-empty state on display's X event queue similar to Tk on X11.

X11 Emulation: Claims & Reality

● If the behavior of the emulation is near real X11
not much additional code is needed in Tk.

● Porting existing Tk extensions becomes easy.
● Window background Pixmaps, clipping by

Pixmaps, and rarely used GC functions are not
implemented.

● Window manager functions are a bare minimum.
● Design inherently does not scale well on multiple

cores.

20 minutes into the future

Tcl/Tk is quite easily portable and SDL already runs on many
platforms. So let's think of ...

Windows ≥ XP
Windows RT
Linux ≥ 2.6 (X11 & DirectFB)
Mac OS X ≥ 10.5
iOS ≥ 5.1.1
Android ≥ 2.3.3
(Free|Open|Net)BSD
Solaris
Haiku
PSP
Mir
Wayland

(list of more or less supported platforms/window systems on SDL 2.0.3)

Thank you.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

